19,966 research outputs found

    Discrete entanglement distribution with squeezed light

    Full text link
    We show how one can entangle distant atoms by using squeezed light. Entanglement is obtained in steady state, and can be increased by manipulating the atoms locally. We study the effects of imperfections, and show how to scale up the scheme to build a quantum network.Comment: 5 pages, 4 figure

    Reduction of noise in gyro outputs

    Get PDF
    Technique is described to reduce extraneous gyro output signals by using relatively inexpensive shrouds which do not increase power comsumption. Shrouds reduce noise by minimizing mass of gas spinning with rotor, reducing Reynolds number near rotor, and inducing laminar flow

    Semidirect product of CCR and CAR algebras and asymptotic states in quantum electrodynamics

    Get PDF
    A C*-algebra containing the CCR and CAR algebras as its subalgebras and naturally described as the semidirect product of these algebras is discussed. A particular example of this structure is considered as a model for the algebra of asymptotic fields in quantum electrodynamics, in which Gauss' law is respected. The appearence in this algebra of a phase variable related to electromagnetic potential leads to the universal charge quantization. Translationally covariant representations of this algebra with energy-momentum spectrum in the future lightcone are investigated. It is shown that vacuum representations are necessarily nonregular with respect to total electromagnetic field. However, a class of translationally covariant, irreducible representations is constructed excplicitly, which remain as close as possible to the vacuum, but are regular at the same time. The spectrum of energy-momentum fills the whole future lightcone, but there are no vectors with energy-momentum lying on a mass hyperboloid or in the origin.Comment: 42 pages, LaTeX; minor corrections, a reference adde

    Local unitary equivalence and entanglement of multipartite pure states

    Full text link
    The necessary and sufficient conditions for the equivalence of arbitrary n-qubit pure quantum states under Local Unitary (LU) operations derived in [B. Kraus Phys. Rev. Lett. 104, 020504 (2010)] are used to determine the different LU-equivalence classes of up to five-qubit states. Due to this classification new parameters characterizing multipartite entanglement are found and their physical interpretation is given. Moreover, the method is used to derive examples of two n-qubit states (with n>2 arbitrary) which have the properties that all the entropies of any subsystem coincide, however, the states are neither LU-equivalent nor can be mapped into each other by general local operations and classical communication

    Local unitary equivalence of multipartite pure states

    Full text link
    Necessary and sufficient conditions for the equivalence of arbitrary n-qubit pure quantum states under Local Unitary (LU) operations are derived. First, an easily computable standard form for multipartite states is introduced. Two generic states are shown to be LU-equivalent iff their standard forms coincide. The LU-equivalence problem for non--generic states is solved by presenting a systematic method to determine the LU operators (if they exist) which interconvert the two states.Comment: 5 page

    Particle production in p-p collisions at sqrt(s) = 17 GeV within the statistical model

    Full text link
    A thermal-model analysis of particle production of p-p collisions at sqrt(s) = 17 GeV using the latest available data is presented. The sensitivity of model parameters on data selections and model assumptions is studied. The system-size dependence of thermal parameters and recent differences in the statistical model analysis of p-p collisions at the super proton synchrotron (SPS) are discussed. It is shown that the temperature and strangeness undersaturation factor depend strongly on kaon yields which at present are still not well known experimentally. It is conclude, that within the presently available data at the SPS it is rather unlikely that the temperature in p-p collisions exceeds significantly that expected in central collisions of heavy ions at the same energy.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    A time-dependent variational principle for dissipative dynamics

    Get PDF
    We extend the time-dependent variational principle to the setting of dissipative dynamics. This provides a locally optimal (in time) approximation to the dynamics of any Lindblad equation within a given variational manifold of mixed states. In contrast to the pure-state setting there is no canonical information geometry for mixed states and this leads to a family of possible trajectories --- one for each information metric. We focus on the case of the operationally motivated family of monotone riemannian metrics and show further, that in the particular case where the variational manifold is given by the set of fermionic gaussian states all of these possible trajectories coincide. We illustrate our results in the case of the Hubbard model subject to spin decoherence.Comment: Published versio

    A probabilistic and information theoretic interpretation of quantum evolutions

    Get PDF
    In quantum mechanics, outcomes of measurements on a state have a probabilistic interpretation while the evolution of the state is treated deterministically. Here we show that one can also treat the evolution as being probabilistic in nature and one can measure `which unitary' happened. Likewise, one can give an information-theoretic interpretation to evolutions by defining the entropy of a completely positive map. This entropy gives the rate at which the informational content of the evolution can be compressed. One cannot compress this information and still have the evolution act on an unknown state, but we demonstrate a general scheme to do so probabilistically. This allows one to generalize super-dense coding to the sending of quantum information. One can also define the ``interaction-entanglement'' of a unitary, and concentrate this entanglement.Comment: 9 page
    • …
    corecore